30 сентября 2019 г., Москва. -- Новые исследования ученых НИТУ «МИСиС» совместно с коллегами из Германии и Швеции

Отправлена: ser, в 02/10/2019, в категорию "Новости бизнеса и компаний"

Краткое содержание:

30 сентября 2019 г., Москва. -- Новые исследования ученых НИТУ «МИСиС» совместно с коллегами из Германии и Швеции

 

 

Ученые НИТУ «МИСиС» совместно с коллегами из Германии и Швеции совершили то, что казалось невозможным: исследователям удалось создать при сверхвысоких давлениях модификацию материала, сохраняющую структуру и свойства даже в условиях привычного атмосферного давления. Кроме того, оказалось, что ее можно воссоздать почти в «обычных» лабораторных условиях при помощи сложных химических реакций. Статья с результатами эксперимента и их теоретическим обоснованием представлена в Nature Communications.

Международная команда ученых из НИТУ «МИСиС», Университета Байройта (Германия) и Линчёпингского университета (Швеция) уже несколько лет занимается вопросом создания сверхтвердых модификаций карбидов и нитридов переходных металлов при давлениях, в сотни тысяч раз превышающих атмосферное. Такие металлы обладают высокой твердостью, а также высокой температурой плавления, благодаря чему их применяют для создания жаропрочных сплавов, режущего инструмента, сенсоров высоких температур, в качестве кислото- и щелочестойких защитных покрытий. Создание более совершенных сверхтвердых модификаций позволит вывести использование таких материалов на принципиально новый уровень.

Более ранние опыты доказывали возможность создания «невозможных» для земных условий модификаций нитридов переходных металлов, однако те «распадались», едва давление снижалось. Очередным металлом, к которому применяли сверхвысокое давление, стал рений. В этот раз ученых ждал прорыв: впервые материал, модифицированный при таком давлении, сохранил свою новую структуру и свойства в «комнатных» условиях.

По степени сложности такую разработку можно сравнить с игрой в гольф, где лунка для мяча находится на крутом склоне, и нужно найти способы не только забросить туда мячик, но и удержать его .

В экспериментальной части исследования в алмазную наковальню помещался рений, и подавался азот. Затем производилось сжатие наковальни одновременно с нагревом лазером свыше 2000 Кельвинов (>1700 °C). В результате при давлениях от 40 до 90 ГПа (от 400 до 900 тысяч земных атмосфер) получилась особая монокристаллическая структура –пернитрид рения и два атома азота.

«Рений и сам по себе практически несжимаем, его объемный модуль упругости составляет примерно 400 ГПа. Но после проведенной модификации он увеличился до 428 ГПа. Для сравнения, у алмаза он составляет 441 ГПа. Кроме того, за счет азотных включений твердость пернитрида рения выросла в 4 раза – до 37 ГПа. Обычно материалы, модифицированные при сверхвысоких давлениях, не способны сохранять свои свойства после извлечения из алмазной наковальни, однако в данном случае коллег-экспериментаторов ждал успех. Разумеется, такой результат требует обоснования, поэтому мы занялись моделированием процесса на нашем суперкомпьютере. Теоретические результаты совпали с экспериментальными данными и позволили объяснить как необычные свойства нового материала, так и возможность его синтеза не только в экстремальных, но и в земных условиях», — рассказывает профессор Игорь Абрикосов, д.ф.-м.н., научный руководитель лаборатории «Моделирование и разработка новых материалов» НИТУ «МИСиС», заведующий отделом теоретической физики Института физики, химии и биологии Линчёпингского университета.

Действительно, важно понимать, что алмазная наковальня подходит исключительно для экспериментов – это слишком маленькая, сложная и дорогостоящая установка для производственных масштабов. Именно поэтому следующим шагом ученых стало создание технологии для синтеза новой модификации материала в более «простых» условиях. Получив представление о процессах, происходящих в материале при сверхвысоких давлениях, ученые смогли рассчитать и провести химическую реакцию с азидом аммония в прессе при давлении в 33 ГПа. Теперь, когда существование такой модификации материала доказано теоретически и экспериментально, можно пробовать и другие способы его получения – например, путем осаждения тонких пленок.

Ранее ученые уже доказали возможность существования «нереальных» модификаций оксида бериллия, кремнезема и ряда нитридов, а также превращения изолятора гематита в проводник – и все это при давлениях, в сотни тысяч (а иногда и в миллионы) превышающих атмосферное.

Источник: Пресс-служба НИТУ «МИСиС»

 


Как Вы оцениваете эту статью?

Отправитель

Отправьте Ваши комментарии
Имя:
E-mail:
Комментарии:
Insert Cancel
Опрос дня
Как преодолеть кризис?






Архив опроса